3.4 The Chinese Remainder Theorem

In many situations, it is useful to break a congruence mod n into a system of congruences mod factors of n. Consider the following example. Suppose we know that a number x satisfies $x \equiv 25 \pmod{42}$. This means that we can write x = 25 + 42k for some integer k. Rewriting 42 as $7 \cdot 6$, we obtain x = 25 + 7(6k), which implies that $x \equiv 25 \equiv 4 \pmod{7}$. Similarly, since x = 25 + 6(7k), we have $x \equiv 25 \equiv 1 \pmod{6}$. Therefore,

$$x \equiv 25 \pmod{42} \Rightarrow \begin{cases} x \equiv 4 \pmod{7} \\ x \equiv 1 \pmod{6}. \end{cases}$$

The Chinese remainder theorem shows that this process can be reversed; namely, a system of congruences can be replaced by a single congruence under certain conditions.

Chinese Remainder Theorem. Suppose gcd(m, n) = 1. Given a and b, there exists exactly one solution $x \pmod{mn}$ to the simultaneous congruences

$$x \equiv a \pmod{m}, \qquad x \equiv b \pmod{n}.$$

Proof. There exist integers s, t such that ms+nt=1. Then $ms\equiv 1\pmod n$ and $nt\equiv 1\pmod m$. Let x=bms+ant. Then $x\equiv ant\equiv a\pmod m$, and $x\equiv bms\equiv b\pmod n$, as desired. Suppose x_1 is another solution. Then $x\equiv x_1\pmod m$ and $x\equiv x_1\pmod n$, so $x-x_1$ is a multiple of both m and n.

Lemma. Let m, n be integers with gcd(m, n) = 1. If an integer c is a multiple of both m and n, then c is a multiple of mn.

Proof. Let $c = mk = n\ell$. Write ms + nt = 1 with integers s, t. Multiply by c to obtain $c = cms + cnt = mn\ell s + mnkt = mn(\ell s + kt)$.

To finish the proof of the theorem, let $c = x - x_1$ in the lemma to find that $x - x_1$ is a multiple of mn. Therefore, $x \equiv x_1 \pmod{mn}$. This means that any two solutions x to the system of congruences are congruent mod mn, as claimed.

Example. Solve $x \equiv 3 \pmod{7}$, $x \equiv 5 \pmod{15}$. Solution: $x \equiv 80 \pmod{105}$ (note: $105 = 7 \cdot 15$). Since $80 \equiv 3 \pmod{7}$ and $80 \equiv 5 \pmod{15}$, 80 is a solution. The theorem guarantees that such a solution exists, and says that it is uniquely determined mod the product mn, which is 105 in the present example.

bers one t

Mod 80.

Howe the fo

Since (mod

O meth

Solut

Subst

of 11 (mod 1234

H

Si

that break then advan mod

Now,

have

(mod ways:

 $x \equiv$